Tunable Reflection Bands and Defect Modes in One-Dimensional Tilted Photonic Crystal Structure
نویسندگان
چکیده
We show theoretically that range of reflection bands and defect modes inside the band gap can be tuned by using a one-dimensional tilted photonic crystal (TPC) structure. A TPC structure is similar to the conventional PC structure with the only difference that in this case alternate layers are inclined at certain angle in the direction of periodicity of the structure. In order to obtain the reflectance spectra of the proposed structure transfer matrix method (TMM) has been employed. From the analysis of the reflectance curve, it is found that 100% reflectance range can be varied and enhanced by using TPC structure for both (TEand TM-) polarizations. The enhancement in reflection bands increases as the tilt angle increases for both the polarizations and hence the enlarged omni-reflectance bands are obtained. Further, we study the properties of the defect modes in TPC structure by introducing the tilted defect at the different tilt angle. The results show that defect modes (tunneling modes) can be tuned at different wavelengths by changing the tilt angle of the structure without changing other parameters. Finally, the effect of variation thickness of defect layers on the tunneling mode has been studied for both TPC and conventional PC structure. The proposed model might be used as a tunable broadband omnidirectional reflector as well as tunable tunneling or transmission mode, which has potential applications in the field of photonics and optoelectronics.
منابع مشابه
Tunable Defect Mode in One-Dimensional Ternary Nanophotonic Crystal with Mirror Symmetry
In this paper, the properties of the defect mode in the photonic band gap ofone-dimensional ternary photonic crystals containing high temperature superconductorlayer (SPCs) have been theoretically investigated. We considered the quasi-periodiclayered structures by choosing two order of ternary Thue-Morse structures with mirrorsymmetry. We investigated the transmission spectra of these structure...
متن کاملDesigning voltage tunable single and multi-channel optical filter with 1DDPC nano-structure
An electro-optic tunable single and multi-channel optical filter based on one-dimensional defective photonic crystal (1DDPC) structure is proposed. A couple of externally tunable defects in arrangement of (AB)5D1(BA)D2(BA)5, where A and B are dielectric materials, D1 and D2 are the tunable defects are used. The defects are composed of the ferroelectric LiNbO3 crystals and two pairs of thin Ag l...
متن کاملDesigning voltage tunable single and multi-channel optical filter with 1DDPC nano-structure
An electro-optic tunable single and multi-channel optical filter based on one-dimensional defective photonic crystal (1DDPC) structure is proposed. A couple of externally tunable defects in arrangement of (AB)5D1(BA)D2(BA)5, where A and B are dielectric materials, D1 and D2 are the tunable defects are used. The defects are composed of the ferroelectric LiNbO3 crystals and two pairs of thin Ag l...
متن کاملA New Method for Calculating Propagation Modes of a One Dimensional Photonic Crystal (RESEARCH NOTE)
Photonic band-gap (PBG) crystals offer new dimensions of freedom in controlling propagation of electromagnetic waves. The existence of stop-bands in the transmission characteristic of these crystals makes them a suitable element for the realization of many useful microwave and optical subsystems. In this paper, we calculate the propagation constant of a one-dimensional (1-D) photonic crystal by...
متن کاملAdd-Drop and Channel-Drop Optical Filters Based on Photonic Crystal Ring Resonators
Here, we propose an add-drop and a channel drop filter based on two-dimensional photonic crystal all circular ring resonators. These structures are made of a square lattice of silicon rods with the refractive index n1=3.464 surrounded by air (with refractive index n2=1). The broadest photonic band gap occurs at the filling ratio of r/a = 0.17. Two linear defect W1 waveguides couple to the ring....
متن کامل